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1. An information theory analysis of the folding of a globular protein is proposed.
2. The folding is seen as a transfer of information between two messages, the primary
sequence and the biologically active conformation. 3. It is shown how the information
transferred was estimated by inspection of proteins of known primary sequence and
conformation. 4. In this estimation, concerted use of subjective (Bayesian) probabilities
leads to a more robust approach which can be employed whether the number of proteins
of known sequence and conformation is large or small. 5. Further, it is demonstrated
that the problem then becomes a very simple algebraic formulation for information
estimates. 6. Finally, it is shown how this process of information theory analysis can be
reversed to predict the conformation of a protein by using its primary sequence and the
above information estimates obtained from other proteins. 7. The present paper
provides the theoretical basis for the derivation and application of a stereochemical
alphabet (Robson & Pain, 1974a,c), and for an investigation of the effects of residues on
the conformations of their neighbours (Robson & Pain, 1974b).

The possibility ofpredicting the native, biologically
active conformation of a protein from its amino acid
sequence is of considerable interest. The ability to
make successful predictions would imply an under-
standing of the relationship between sequence
and conformation and would help in solving the
problem ofhow a globular protein folds up. Further,
the ability to produce novel and artificial confor-
mations could have a variety of applications in
the biomedical and bioengineering fields.
The problem of making good predictions of the

overall conformation of a protein has not yet been
solved despite experimental evidence (Anfinsen,
1962, 1967; Tanford, 1968) that all the information
for the native conformation is carried by the amino
acid sequence. Currently, the problem is being
characterized in the following way. A conformation
can be described either in terms of external co-
ordinates (the Cartesian co-ordinates of all the
constituent atoms) or internal co-ordinates (the bond
lengths, valence angles between bonds and rotation
angles around bonds). Usually, a subset of the
internal co-ordinates is used, namely, the rotation
angles around single bonds that have relatively small
energies associated with their distortion from
equilibrium values and are therefore called 'soft'
variables. Since the remaining 'hard' variables are
relatively invariant, the problem reduces to one of
predicting the values of the soft variables, at least as a
first approximation. Further, attention is directed
to those soft variables that specify the progress of
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the protein backbone through space, namely the
rotation angles 0 and V/ around the N-Cac and Ca-C'
bonds respectively. The remaining rotation angles
a) around the C'-N bonds of the backbone are rela-
tively 'hard' because of partial double-bond character
and are therefore frequently considered to be invariant
in the planar and trans configuration. Although it is
true that a small error in the predicted values of the
internal co-ordinates can lead to very large error in
the predicted values of the external co-ordinates,
good predictions ofthe soft variables, and particularly
of q and V', would represent a considerable advance
at the present time.

Inthepast therehavebeen two principal approaches
to the prediction problem (see Robson, 1972, 1974,
for reviews). The first approach, whichmay be termed
analytic, involves making predictions of the values of
the soft variables on the basis of statistical analysis of
proteins of known sequence and conformation, the
assumption being that such correlations as exist
between sequence and conformation in this example
will also hold in any new protein. The other approach
involves the use of theoretical conformational
energy calculations on the assumption that the native
conformation corresponds to the deepest minimum
in the conformational free-energy surface. Although
enjoying some success with local interactions
between residues close together in the amino acid
sequence, the analytic approach apparently cannot
at the present time be extended to non-local
interactions because correlations fall off with
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separation along the amino acid sequence (Robson &
Pain, 1972; Nagano, 1973; Robson & Pain, 1974b).
On the other hand, the conformational free-energy
surface of a protein is large, multi-dimensional
and occupied by many minima. Since the deepest
minimum is, by definition, only discovered when it is
shown that there is none deeper, a prediction by the
theoretical conformational energy approach is well
beyond the capabilities of any contemporary
computer.

It is possible, however, that the analytic and
theoretical conformational energy approaches may
be successfully combined. This would involve the
use of 'heuristic' programs, in which the algorithm
for selecting the next conformation in the search
for the deepest minimum gets information not
only from the free-energy surface calculated up
to that point, but also from other sources. Such
additional or 'heuristic' information may be provided
by the analytic method, i.e. by statistical analysis of
proteins of known sequence and conformation.
This is the approach that is being explored in our
laboratory (Robson & Pain, 1973). Now attention is
closely directed to the problem of selecting suitable
starting conformations because the choice of starting
point is crucial in any minimization problem involving
multiple minima.
The analytic method being used to obtain

'heuristic' information is an information-theory
technique. Insofar as information theory can be
distinguished from the closely related field of
classical statistics, then this method may justifiably
be called an information-theory technique because it
treats the sequence of amino acid residues and the
sequence residue conformations as two messages,
the second of which is derived from the first by a
translation process. This kind of problem is the
traditional domain of information theory and the
algebra and manipulations ofinformation theory have
been developed and utilized to discover the rules that
govern this particular translation process.
The method may be further qualified as a

'Bayesian information-theory' approach, or, more
correctly, as a 'Bayes' expected-information' ap-
proach. This modification is necessitated by the fact
that only a very limited number ofmessages ofknown
translation (sequences of known conformation)
are available. To avoid sampling 'noise' owing to
the small size of the sample, reasoning due to Bayes
(1763) has been utilized to weight down the contri-
bution of unreliable terms in a natural way, this
weighting being implicit in the measures and
included in them from the outset. This approach is
in contrast with those in which weighting coefficients
are added at a later stage, either on the basis of
classical statistical reasoning (Pain & Robson, 1970),
or as factors empirically determined as leading to
improved predictions (Nagano, 1973).

The use of the Bayes' expected-information
approach to predict the location of helical regions in
globular proteins has been described by Robson &
Pain (1971). In the present paper, the approach is
generalized, a more complete proof is stated and
procedures are described which are simpler to handle
and to compute.

Theory

The amino acid sequence andprotein conformation as
messages

To study the way in which information concerning
the conformation of a protein is carried in the amino
acid sequence we have treated the sequence of amino
acid residues and the conformation of the protein
as two messages, the second of which is derived
from the first by a process of translation (the folding
process).
Each of these messages may be represented as a

string, i.e. a finite number of symbols in an ordered
linear array. The amino acid sequence of a protein
is a string {R} of symbols R, each symbol being one
amino acid residue of 20 possible types. The corre-
sponding protein conformation is a string {S} of
symbols S, each symbol being a residue conformation
of Ns possible types. Let Rj be thejth symbol in {R}
and Sj thejth symbol in {S}. Then, if both {R} and {S}
contain L symbols each, we may write:

Amino acid sequence R =
(R1Po R2R3c.o.m .Rti RL), 1 =j<L

Protein conformation S=
(S1, S2, S33, . . . S3, . .. SL), I <j<L

(1)

(2)
Each residue conformation Sj itself comprises a
string of symbols which are the soft variables associ-
ated with residue Rj:

S. = (4&, V's, Xlj, X2J, X3J, * * *) (3)
The length of this depends on the number of soft
variables in the side chain of residue Rj. Neglecting
for the present purposes the conformation of the
side chain the description of the protein conforma-
tion is limited to symbols Sj = (0j, wj). Ns, the number
of possible types of S, is determined by the way in
which the two-dimensional space defined by dimen-
sions b and Vu is exhaustively partitioned into
non-overlapping domains, each domain representing
a range of angles defining a type of conformation.
For example, the space can be partitioned into square
cells with sides of 20°, so that Ns = 324. Note that the
magnitude of Ns determines the complexity of a
prediction task, since if {R} represents a protein
with L amino acid residues it will have (Ns)L possible
conformations S.
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Folding ofa protein molecule as a translation process

A translation may be recognized as a transfor-
mation applied by an operator Tr so that:

{S} = Tr{R} (4)
Although the method of translation in nature is the
navigation of the pathway of folding defined by the
conformational free-energy surface of the molecule,
this is for the present purposes a 'black box'
process defined only by the observed relationship
between the input symbols R and the output symbols
S. Thus operator Tr can be considered as a table of
relations between input and output symbols con-
structed on the basis of extensive observation.
In the same way as the genetic code requires a
three-dimensional table in which three nucleic acid
bases are required to define a residue, then the stereo-
chemical code relating sequence to conformation
requires a d-dimensional table in which d residues
are required to define a residue conformation. The
stereochemical code will be broken only when it is
possible to write the table that uniquely and correctly
defines the output message. At its simplest it would be
a one-dimensional table in which each of the 20 kinds
of amino acid residue has its own characteristic and
independent conformation. At its most complex
it would be an L-dimensional table in which the whole
input message (amino acid sequence) must be known
in order to predict any one symbol Sj in the output
message (protein conformation). The real situation
seems to lie somewhere in between in the sense that
some residues, such as proline and glutamic acid,
are much more restrictive of their own confor-
mations than are others which depend greatly on
interactions with other residues.
However, we do not know a priori just how many

symbols are involved in this way or even if the
number is constant for all input-output relationships.
To present a general theory in the absence of such

prior knowledge it is useful to define symbol com-
plexes x and y which represent any selection of
symbols from a message, ranging from one symbol
to the whole message. Thus:

Output complex x = (. ... St, S3, Sk, * * *) (5)

Input complexy = (... Rig Rm, Rn .. .) (6)

where i, j, k, 1, m, n are any positive integers AL.
Note special cases x = Sj and y = Rj.

Information carried by symbols and symbol complexes

P(xly) is the probability of occurrence ofsymbol or
symbol complex x in the output message when symbol
or symbol complex y has occurred in the input mes-
sage. This is equivalent to P(x), the probability of
occurrence of symbol or symbol complex x in the
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output message, only when y has no bearing on x
(see for example Jeffreys, 1948). The logarithm of the
ratio of P(xjy) to P(x) is a measure of the 'statistical
constraint' between x and y which is the definition
byFano (1961) ofthe informationy carries concerning
the occurrence of x. This information, which we
assume to be transmitted from y to x during the
folding of a globular protein, is thus:

I(x;y) =(log(P(xIy)) (7)

Information is expressed in units of 'nats', 'bits', or
'Hartleys' depending on whether the above logarithm
is natural, base 2, or base 10respectively; in the follow-
ing work the natural logarithm is assumed through-
out.
When y is a symbol complex it may be rewritten

as a concatenation of symbols or simpler symbol
complexes y1 and Y2. Two ways of expressing the
information carried in such a concatenation are:

I(x;yi,y2) = log (P( iY2))

I(x;y2Iy1) = log (PY1Y2)

(8)

(9)

The first measures the information that y, and Y2
carry jointly concerning the occurrence of x, and the
second measures the information that Y2 carries
concerning the occurrence ofx when Yi also occurs in
the input message, but does not include the contri-
bution owing to yl. Subtracting eqn. (9) from eqn.
(8) yields:

I(x;yl) = log((i)
which is, in fact, the contribution owing to yl.

'Star'functions
If the output symbol is one of two possible alter-

natives, x = 1 and x = 2, eqn. (7) can be developed as
follows:

I(x = 1 ;y)-I(x = 2;y)

~log -xj ly))- log (Px21y)) (10)= Po(x = l) )lg(P(x = 2))
Writing 1:2 for 'one or two' and the left-hand side as
I(x = 1: 2;y) introduces a function which represents
the logarithm of a 'likelihood ratio' (see Kullback,
1959) and a measure of the 'weight of evidence' in
favour ofx = 1 as opposed to x = 2 (Goode, 1962).
By rearrangement of the right-hand side of eqn.

(10) we obtain:

I(x = 1:2;y) = log (P(x 2Iy) P(xo 2)kP(x=12Jy) log ( 1)
( 1)
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Since x= 1 and x = 2 are by definition exhaustive
and mutually exclusive events, P(x = 1) = 1-P(x = 2)
andP(x = 1 Iy) = 1-P(x = 21y), so that:

I(x= 1:2;y)

-P(x = 1 P(x=1)~
log ( P(x=_ yJ -log (1 -P(x=l)/ (12)

Each right-hand-side term is the logarithm of a
'K-statistic' (Jeffreys, 1948). Replace these terms by
'star' functions defined as:

*(x1:2)log P(x = 1)

* -P(x-1)

*(x=1:2;y)=log kiP(x-=IlIy)

(13a)

(13b)

and which are valid when x has only two alternatives,
1 and 2. Eqn. (12) can thus be written as:

I(x = 1:2;y) =*(x = 1:2;y)-*(x= 1 :2) (14)
Similarly, eqns. (8) and (9) can be developed and
written in terms of 'star' functions:

I(x = 1 :2;Y1,Y2) = *(X = 1 :2;yi,y2)-*(x = 1 ;2)

(15)

I(x= 1 :2;Y2IY1) = *(x= 1 :2;y1,y2)-*(X= 1 :2;'yj)
(16)

Generally, any I function with the general form
I(x = 1:2;y) can be expanded as at least two 'star'
functions. Note also the identity:

I(x=1:2)=*(x=1:2) (17)

'Star' functions may conveniently be referred to as
the preference for output symbol x = 1 as opposed to
x=2. Functions such as *(x= 1:2;yl,y2) may be
called the preference of x given Yi and Y2.

Estimation ofinformation

Initially, we suppose that there are no experimental
clues as to how the sequence of amino acids is trans-
lated into a protein conformation, so that the opera-
tor Tr (eqn. 4) is undefined to the observer. Suppose,
however, that the observer sees symbol or symbol
complex y translate to symbol or symbol complex
x exactly f(x,y) times. This corresponds to the
identification of the conformation of residues by
(typically) X-ray-crystallographic analysis of pro-
teins of known amino acid sequence. All such
frequencies f(x,y), ordered in a contingency table,
represent the data D(x,y).
The problem is to obtain from this data D(x,y)

an estimate of I(x = 1:2;y), the information in y
as to which of the two conformations, x = 1 or
x = 2, will be realised.

Consider the frequencies:

f(x) = Af(x,y)
y

f(y) = if(x,y)
x

falI = 1Af(x,y)
x y

(18)

(19)
(20)

When all frequencies are largeP(xIy) can be written as
f(x,y)/f(y) andP(x) asf(x)Ifa11, by using the common
concept of probability as a frequency limit. In such
a case eqn. (14) is estimated as:

Est. [I(x = 1: 2;y)I D(x,y)] = log (f2 y) f(l) (21)

in which f(1,y) =f(x,y) for x= 1, f(1) =f(x) for
x= 1, and so on. When the frequencies concerned
are not all large, however, the probabilities cannot
be estimated as a ratio of frequencies and a more
realistic estimate of eqn. (14) must be found.

Estimation of information as Bayes' expected infor-
mation

The system of interest really consists of three parts,
the input coded messages, the output translated
messages and the mind ofthe observer. Information is
transmitted from the input to the output messages,
and information about this transmission is, in turn,
received by the observer. These two kinds of infor-
mation may be considered as qualitatively distinct
though they are quantitatively related.
The consequence of observing some process in

the real world is a change in the brain of the observer.
Consider the hypothesis that a particular amount of
information is transmitted from y to x. Let
Pr[I(x= 1:2;y)] be the observer's prior degree of
beliefin this hypothesis (held prior to theobservation),
and let Pr[I(x= 1:2;y)ID(x,y)] be the observer's
posterior degree of belief in this hypothesis (held
after the observation).

Consider a continuous distribution of such degrees
of belief on a continuous space of hypotheses, each
hypothesis being a real-valued measure of the
information transmitted fromy to x. Let the posterior
degrees of belief be held in such a way that their
distribution is subject to the normalization constraint:
+00

PrVl(x = 1:2;y)ID(x,y)] * dI(x = 1: 2;y) = 1,
-00

0<Pr<1 (22)

After considering all his posterior degrees of belief
corresponding to all his hypotheses, the amount of
information that the observer expects to be trans-
mitted from y to x is the expectation or expected
value E of I(x = 1 :2;y):
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E[I(x = 1 :2;y)ID(x,y)]
+00

=fI(x=I1:2;y).Pr[I(x=1:2;y)ID(x,y)]-
-00

dI(x=1:2;y) (23)
If this is considered as one choice from several pos-
sible ways of improving on the estimator Est. of
eqn. (21), it is a very natural choice because of the
increasing recognition of expected value as an axio-
matic concept of probability theory (Whittle, 1970).
Eqn. (23)may be called a Bayes' expected-information
estimate, because degrees of belief may be identified
as subjective probabilities utilized by the Bayesian
school [see for example Lindley (1965), Savage (1962)
and Silvey (1970)].

Evaluation of Bayes' expected information by using
probability densityfunctions

Consider the set of probabilities P(x,y), the
probabilities that the symbols y translate to the
symbols x, such that:

0 SP(x,y) 1

P(x) = IP(x,y)
y

22P(x,y) = 1
x y

P(Y) = IP(x,y)
x

P(xjy)= P(X y) (24)

Then, by reference to eqn. (12), the set of allP(x,y),
determines the set of all I(x = 1:2;y). Eqn. (23) may
therefore be solved by reference to the set of
Pr[P(x,y)I D(x,y)], the degrees of belief in the
hypotheses, based on data D(x,y), that the P(x,y)
have particular values. The problem is thus seen as
one of evaluating the Pr[P(x,y)ID(x,y)] and all
degrees of belief subsequently considered are there-
fore degrees of belief concerning probabilities, i.e.
Pr is now a probability density function. Pr[P(x,y)]
is thus a prior probability density whereas
Pr[P(x,y)jD(x,y)] is a posterior probability density.
These two probability densities may be related by
the equation due to Bayes (1763). For present pur-
poses the Bayes' equation may be written as:

Pr[P(x, y)ID(x, y)]
= K(x,y) Pr[D(x,y)IP(x, y)] Pr[P(x,y)] (25)

i.e. for each postulated probability P(x,y): 'degree
of belief in probability after seeing data' is propor-
tional to 'likelihood of obtaining that data given that
probability' multiplied by 'degree of belief in
probability before seeing data'.
The likelihood Pr[D(x,y)IP(x,y)] is defined below,

and K(x,y) is a multiplier determined by the
normalization constraint:
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r[P(x,y)D(x,y)]dP(x,y)
0

1

= K(x,y)* fPr[D(x,y)IP(x,y)] Pr[P(x,y)] * dP(x,y)
0

= 1 (26)

A general and natural choice of prior probability
density is, for N types of y, the (2N-l)-dimensional
Dirichlet density:

Pr[P(x,y)] oc
IIP(ly)g(l, y)-.[l_p(l,y)]9(2y)-,x= 1:2 (27)
y

where P(l,y) = P(x,y) for x = 1, g(l,y) =g(x,y) for
x= 1, and so on.
The g(x,y) are parameters of a prior degree of

belief and are small when our prior degree of belief
that P(l,y) takes a specified value is small. In the
absence of data it is therefore reasonable that they
should be oflow value. However, it is not immediately
obvious what this low value should be. This problem
is considered below.
The likelihood is the classical non-Bayesian deter-

minable function. It is the 'entry point' to eqn. (25),
being the only term whose value directly depends on
the data. Assuming multinomial sampling with only
fall fixed, then the likelihood of the data D is:

Pr[D(x,y)JP(x,y)] cx:
llP(1,y)f1Y* [1-P(1,y)]f2Y,x = 1:2 (28)
y

Multiplying the likelihood by the prior probability
density, as required by eqn. (25), to give the posterior
probability density, we obtain:

Pr[P(x, y)J D(x, y)] cl Pr[D(x, y)IP(x, y)] *Pr[P(x, y)]
= JP(1,y)h(l,Y)l.[1 -P(1,y)]h(2.y)-1 (29)

y

in which:

h(1,y) =f(l,y)+g(l,y),
h(2,y) =f(2,y)+g(2,y) (30)

Observed frequencies (f) of the likelihood
represent objective evidence concerning the distri-
bution of probabilities, and parameters (g) represent
subjective evidence about this distribution which can
exist even before the observations are made.
Parameters (h) therefore represent the total evidence
that is now available as the sum of objective and
subjective contributions.
For h(1,y)> 1, h(2,y)> 1 a constant of propor-

tionality K(x,y) can be found which will satisfy
eqn. (26), i.e. the constant of proportionality is
determined by normalization of the posterior
probability density.
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The above distribution applies to P(x,y). Can the
argument be extended to P(x) and P(xly) of eqn. (24),
so allowing the estimation E[I(x = 1:2;y)ID(x,y)]
through estimates E[*(x = 1:2)1 D(x,y)] and
E[(x= 1: 2;y) ID(x,y)] (cf. eqn. 14)? First, consider
phl-i. (1 _p)h2-1, which is the one-dimensional
analogue of eqn. (29) with generalized parameters P,
h, and h2. Thenormalizingconstant ofproportionality
for eqn. (29) in the one-dimensional case is then the
reciprocal of:

r ph1-1i (1 _p)h2-1 * dP = (1 p)h2-1

0 0~~~~LJ

+ h2-lphl * (1 P)h2-2 *dP
0

(31)

Noting that the first term after the equals sign (=)
has the value zero and proceeding by progressive
solution of the residual integral we obtain:

phl-i -(1 -P)h2-1 *dP
0

(h2-1)(h2-2)(h2-3)...I
hi(h, + 1)(h.,+ 2) . .. (h.,+h2-2)

(h.- 1)!(h2-1)!
(h1,+h2- 1)! (32)

giving the full algebraic form for the one-dimensional
analogue of eqn. (29) as:

/J[P;hl,h2] = (h.+h2-1)! phl-. *(1-_p)h2-1 (33)

and so defining a fi distribution (Lindley, 1965).
Following Wilks (1962, section 7.7), a Dirichlet

distribution as represented by eqn. (27) has the
following properties. The P(xly) constitute a set of
independent random variables, and each has the ,B
distribution:

Pr[P(xly)I D(x,y)] = 8[P(1,y);h(1,y),h(2,y)] (34)

The marginal posterior density of P(x) also has a fi

distribution:

Pr[P(x)I D(x,y)] =j8[P(1);h(l),h(2)] (35)

where

h(1) = -7h(1,y), h(2) = 2h(2,y)
Y' Y

(36)

But *(x = 1 :2;y) is determined by the set of

P(xIy) (eqn. 13b) and *(x = 1:2) by the set of P(x)
(eqn. 13a). Hence:

E[I(x = 1:2;y)ID(x,y)]
= E[*(x = 1: 2;y) D(x,y)]
E[*(x = 1: 2)1 D(x,y)] (37)

where:

E[*(x= 1: 2;y)ID(x, y)]

= flog (Iy) *fy[P(Y); h(1, y), h(2, y)] dP(l Iy)
0 1-P( ly)
[h(1,y)+h(2,y)- 1]!

[h(l1;y)-I]!![h(2,y)-1I
I

x log P .ph(l.Y)-i (1 .p)h(2,y)-l dP (38a)
0

and:

E[*(x= 1 :2)1D(x,y)]P(1)
= flog - ( A1)[P(1); h(l), h(2)] - dP(1)

[h(l)+h(2)- 1]!
[h(l)-I]!![h(2)-1
1 pp(2-x J log .ph(l)i .(1 p)h(2)-* dP (38b)

0

Algebraic form of the Bayes' expectation of a 'star'
function

The integral which represents the Bayes' expec-
tation of a 'star' function [eqn. (38)] was first solved
by Robson & Pain (1971). The following is based
on an elegant solution due to I. D. C. Gurney
(personal communication).

Rewrite eqns. (38) as the general algebraic function
T with numeric arguments h. [representing h(1),
h(1,y) etc.] and h2 [representing h(2), h(2,y) etc.].
Then:

T(h1, h2)

(hl +h2-1 r
1

P
= (h 1 1) !(h2-1)-! | log 1 _ p phl-i (1 -p)h2-1 .dP

(hl- 1)!(h2 -. )! _ph-1-d

1

- log(q)-(1-q)hi-1qh2-idq]
0

= (h- )!(h2- )! [U(h1, h2)-U(h2, hI)], say (39)
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Integrating by parts, we obtain:
r(hx,h2) =[Ph lg)(ph 1 1 1

U(h1,h2) =
j

[-11()(l..P h2]'2- 1I log(p)phl*(1 _p)h2-2.dp-h fphl -I (I _.p)h21 - dp
h., hi~0 0 0

(40)

Noting that the first term on the right-hand side is
zero and that the last term has already been solved
[eqns. (31) and (32)], we obtain:

U(h1, h2)

hi1 *U(hi +1,h2-1)-hi* (h11+h2-1)!
Multiplying both sides by (h1+h2- 1)(01-1) !(h2-1)!
yields:

(hi-+1)!(h2-1)!
(hl+h2-)! U(hi+1, h2 -1)..i (42)

and reiteratively solving for U(h1+ 1, h2-1) gives:

(hl +h2-1) !
(h.-1)!(h2-1)! U(h1,h2)

_ _ 1

(hl(h+ 1) +111 h2-1) (43)
Eqn. (39) can therefore be rewritten as:

T(h1, h2)

However s ohb+h2i uI ho+h2t-ht

(1 + 1 ) ifh2<h

=-(1 + ... 1 )if h, <h2 (44)

However, substitution by unity shows that:

TOO, ) = (1 +1/2+ * @l1)

of frequencies f and subjective evidence g (eqn. 30),
will take the value zero when the observed frequencies
are zero. More generally, we must allow for non-
positive values of h.
The definition of * (h) can be extended to h 1 by

assuming that the information contributed by hl1
is not significantly different from that contributed by
h = 2. Hence, we define:

(45c)
By taking, for example, g=0 so that h=f+ 0, it
might appear that zero observed frequencies are
contributing significant information. However, #
functions are always subtracted from one another
and the constant term 1 in every * function therefore
cancels out.

Hence, by eqn. (44):
T(h1, h2) = #(hl)-* (h2) (46)

and eqn. (38) can be rewritten as:

E[*(x = 1 :2;y)ID(x,y)] = * (hlY)-# (h2,) (47a)
E[*(x = 1: 2)1D(x, y)] = # (hl) 0(2) (47b)

with *(0)= 1, * (1) = 1, # (2)= 1, *(3)=1 + 1/2,
* (4)-1 + 1/2+1/3, # (h)= 1+ 1/2+1/3 +...l1/(h-1).
This may be interpreted as a constraint onh (eqn. 48).

Hence, despite the relative complexity ofthe theory,
we have proven a result that makes the evaluation of
eqn. (37), and expected-information functions in
general, very simple. This result is that an expected
information function can be written in terms of
the functions * of parameters h. It remains only
to consider the simple relationship which the
parameters h bear to the observed frequencies f.

= #((hi), say, forh, >1

T(l,h2) =-(1+h1/2+-*a h2>1

=- #(h2), say, forh2 > I

(45a)

(45b)
As described after equation (30), parameters h

represent the total evidence that is available concern-
ing the distribution of probabilities, this evidence
being composed of objective and subjective contri-
butions. Of course, we generally wish to make the
total evidence as objective as possible and one way of
doing this is to set all the parameters g, representing
the subjective contribution, equal to zero (see, how-
ever, the next section). In such a case h, as the sum
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Choice ofparameters h
What values should be used for the h parameters of

eqns. (47)? Recall that h(x,y) =f(x,y)+g(x,y) (eqn.
30). Thef(x,y)areobserved frequencies overwhichthe
observer has no control once the data are in. However,
the g(x,y) are subjective parameters belonging to
the prior degree of belief (eqn. 27) held before seeing
data D(x,y). There is therefore a certain freedom in
the choice of the g(x,y) and they may be interpreted
as dummy parameters that might usefully be modified
for practical purposes. For example, if we choose
g(x,y) = k, i.e. all the g(x,y) are the same and
independent of x and y, then g(x,y) acts as a 'quench
factor' which, if sufficiently large, weights down the
information obtained.
However, there are certain constraints which should

be imposed on the h(x,y).
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(1) The 'proper' choice ofparameters h. The choice
of parameters h must be proper, i.e. it is necessary
that:

h(x,y)> 1 (48)

otherwise the posterior probability density (eqn. 29)
cannot be integrated to unity and the expectation of
a 'star' function (eqns. 38) cannot be normalized.
Note, however, that the g(x,y) can be chosen so that
the prior probability density (eqn. 27) does not
integrate to unity; such 'improper' prior probability
densities are often used in Bayesian statistics (Silvey,
1970).

Similar arguments apply to parameters h(x).
(2) 'Prejudiced' and 'unprejudiced' choices of

parameters h. The Bayesian approach allows us to
include any well-founded prejudices in the prior
probability density, e.g. that certain conformations
are absolutely impossible and that we would refuse
to be shaken from this belief even if observations
that were subject to experimental error appear to
indicate such an 'impossible' conformation. For
example, we might choose a very high value for
g(2,y) and hence h(2,y) when y represents the single
residue proline, ifwe felt that the conformation x = 1
was strongly disallowed for proline in all situations.
Such a feeling would reasonably arise from the prior
evidence that the backbone conformation of the
proline residue is always constrained to a limited
range by additional covalent bonding between
backbone and side chain. Nevertheless, it might
equally well be felt that a less prejudiced view is
safer: in the case of proline some conformation
x =1 might appear much more feasible if we had
further data concerning the distortion of ring
geometry. There is therefore a case, at least in the
initial stages of an investigation of this type, for
not letting prior degrees of belief add to the absolute
value of the information in the data. In other
words, parameters should not be chosen so as to
contribute to the final evidence that one of x = 1
and x = 2 is favoured over the other. Thus inclusion
of strong, well-founded prejudices will not be further
considered in this paper even though they may
certainly be readily accounted for in the theoretical
framework of the Bayes' expected-information
approach.
We thus chose that the h(x,y) should be

unprejudiced, i.e. the g(x,y) should be chosen such
that:

# [h(l,y)]- # [h(2,y)]J < # [f(l,y)]- # [f(2,y)]I
(49)

Similar arguments apply to the h(x).
(3) The 'consistent' choice of parameters h. The

above constraints on the h(x,y) also apply to the
h(x). There is, however, an additional constraint
on the h(x), namely that h(x) = I h(x,y) (eqn. 36). It

3,

follows that when both h(x) and h(x,y) appear in an
equation they should be consistent by satisfying this
requirement. Such consistency could most simply be
achieved by setting all g(x,y) = 0. However, unilike
choices that waive relation (48), any deviations from
this consistency constraint are numerically calculable.
Further, unlike choices that waive relation (49), any
deviations do not necessarily reflect a prejudice
concerning x. There are therefore certain choices
which are inconsistent but otherwise reasonable.
One of these uses the 'expected-frequency method'
(see below) and has been demonstrated to lead to
improved predictions (Robson & Pain, 1971).

'Expected-frequency' method

This is essentially the choice of h parameters used
byRobson &Pain (1971). Consideragain eqn. (37):

E[I(x = 1: 2;y)JD(x,y)]
=E[*(x = 1::2 y)ID(x,y)]-E[*(x = 1: 2)1D(x,y)]

(37)
What is the estimate of *(x = 1:2) with parameter x,
by using data D(x,y) with parameters x and y?
Define 'expected frequency' e(x,y) as:

e(x,y) = rf(x);f(y)]
Lfall

(50)

The square brackets indicate that the nearest positive
integer is used. The term within these brackets is
analogous to 'expected frequency' as used in the 'chi-
squared' test. Also define 'observed frequency'
o(x,y) as:

o(x,y) = f(x,y)] (51)

The square brackets again indicate that the nearest
positive integer is used with the consequence that if
f(x,y) is zero, o(x,y) is one. The term within these
brackets is analogous to the 'observed frequency'
as used in the 'chi-squared' test.
Then the estimate ofI(x = 1: 2;y) with parameters h

chosen by the expected frequency method is:

E[I(x= 1: 2;y)jD(x, y)]
= #t[o(l,y)]-# [o(2,y)]-# [e(l,y)]+ # [e(2,y)]

(52)

Similarly, it is also possible to choose parameters h
by the expected-frequency method when y, and Y2
(see eqn. 15) are parameters of the information
function to be estimated:

EVI(x = 1: 2;y2|ly)ID(x,y1,y2)]
= # [o(l1,y,y2)]- # [o(2,y1,y2)]

-# [e(l,y2lyl)]+ # [e(2,y2lyl)]
in which:

o(x, Y1, Y2) = [f(x, Y1, Y2)]

(53)

(54)
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e(x,y2jyl)= ( yf(y1,Y2)] (55)

where:
f(x,yI) = Af(x,yI,y2) (56)

Y2

f(Yl,Y2) = 2f(x,Yi,Y2) (57)
x

f(yl) = ZYf(X,y1,y2) (58)
x Y2

and where the large square brackets again mean that
the nearest positive integer is used.

Inspection shows that the expected-frequency
method represents both a proper and unprejudiced
choice of parameters h.

Procedures

This section describes the practical procedures that
should be carried out in order to predict the
conformation ofaproteinofknownprimary sequence.
Initially, this is described for the case when only
two alternative conformations, such as helix and non-
helix, are considered, and this is then extended to
the consideration of many operations.

Step 1. Define as an Ifunction the information to be
used

Typically, the intention is to predict the con-
formation Sj of residue Rj, by using information
contained in the sequence of amino acids Rj-M,...
Rj,... Rj+M around RJ. The range parameter M
is generally of the magnitude of 10 so that residues
more than 10 removed from Rj are neglected. This
approximation is based on the assumption that such
information as can be measured with the data avail-
able arises only by interactions involving residues
close together in the primary sequence. Of course,
this assumption can be justified by plotting the
measurable information as a function ofdistance from
Rj, and ways ofdoing this are described by Robson &
Pain (1972, 1974b).
The theory of Bayes' expected information

requires that the prediction represents a choice
between two possible alternatives, X and R. The
use of string Rj_M,...Rj,...Rj+M to predict Sj then
involves the estimation of information I(Sj = X:X;
RJ_M,.. .R, . .Rj+M). This estimate is derived by
analysis of proteins of known sequence and confor-
mation. Of course, this analysis involves a precise
definition of X, and this is done by defining a domain
of angles on the q0-y surface, say the range
-900< 0 <-300°,-900< y/ <-30°, which would repre-
sent the right-hand a-helical conformation. All resi-
dues with S-y angles in such a range are said to have
conformation Sj = X, and all those with angles

Vol. 141

outside such a range are said to have the confor-
mation S, = R.
The above discussion is confined to the prediction

of the conformation Sj of a single residuej. However,
the prediction of a whole protein can be carried out
by predicting all the Sj values from the first residue
j = 1 to the last residue j= L. A disadvantage in
the use of I(Sj= X:X; RJ-M,. . . Ri,... RJ+M) is that
the conformation Sj is treated as being not
dependent on the conformation of other residues.
This could be overcome by using functions such as
I(Si_1, Si, Si+,= X:X ;Rj_M, ... Rj, .... Rj+M), theinfor-
mation concerning the conformation of three
residues at a time, or I(S =X:X; RJ_M,... Rj,...
Rj+MISj1,,Sj+1), the information concerning Sj
given that specified conformations Sj-_ and Sj+1
occur. However, the use of this kind of information
requires iterative or matrix methods which involve
considerable computer time. As described below,
it is possible to use I(Sj= X:X; Rj-M, .. Rj,.. .Rj+M)
with a simple adjustment to allow for the effects of
neighbouring conformations, and we will continue
using this function as our principal example.

Step 2. Expand the information to be used into
simpler Ifunctions

Information functions containing several para-
meters can usually be expanded, i.e. rewritten as a
sum of terms.

If the number of proteins of known sequence and
conformation were very large, then there would be
no need to expand I(Sj= X: X; RjM, ... Rj, .. .Rj+M).
However, expansion is almost invariably necessary
because, although there may be insufficient data to
estimate the unexpanded I function, there may be
sufficient data to estimate some of the terms of the
expansion. Indeed, taking M= 10, we would need
roughly 2021 proteins of known sequence and
conformation to produce reasonable predictions with
the unexpanded function; on the other hand,
experience shows that reasonable predictions of at
least helix and non-helix can be carried out by using
about 10 proteins and an expanded function (Robson
& Pain, 1971, 1973).
The general rule for expansion is as follows.

Addition of eqn. (16) to eqn. (14) with y = y, yields
eqn. (15) and proves:

I(x= 1:2;y1,y2)
=I(x= 1:2;yl)+I(x = 1:2;y2lyl) (59)

With x = Sj,y, = Rj and Y2 = (Rj-M, . .. RJ-1, R3+1, ...
Rj+M) we can therefore write:

I(Sj= 1: 2; Rj-M,... Rj,... Rj+M)
= I(Sj = X: X; Rj)

+I(Sj= X:X;RJ.R.M,. . .R_1PRj+1, .. .Rj+mlRj) (60)
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Next, we can further expand the last term by writing
y1 = Rj+m, and Y2 = (RJM_M, ... Rj+Mlb, Rj+mj+ ..*
RJ+m). Proceeding reiteratively by repeated expan-
sion of the most complex term in this waywe obtain:

I(Sj = X: ;RJ-M, . . . RJ,... RJ+M)
ml- +M

=(Sj = X: ;Rj)+ I I(Sj = X: ;Rj+mlIRj)m1L -M
ml- +M m2=+M

+ I2 I(Sj=X:X;Rj+m2IRjRj+ml))+...
ml--M m2--M

ml=+M m2=,+M m2M+1=+Mf=X: ;RfmMl J+ +"2(S=:;Ji2+IJ

ml=-M m2--M m2M+1--M
Rj+m,. . .Rj+M2M) (61)

The string RJM,. . . Rj,... Rj+M contains 2M+ 1
residues and this is also the number of terms in
eqn. (61).

In principle, the theory allows us to handle all
these terms whether or not sufficient data is available.
If data are insufficient for computing the information
in any one term, it is automatically 'edited out' by
estimating it via Bayes' expected information, i.e.
the value returned is approximately zero. In practice,
the allocation of computer storage simply for storing
such values close to zero would be wasteful and
usually prohibitive. Fortunately, the value of eqn.
(61) could adequately be approximated by neglecting
such terms in the first place. For example, with X
representing a suitable range of angles around the
right-hand a-helix, and with current data, inspection
shows that there would be little difference in the value
of eqn. (61) if all terms containing more than two R
parameters were neglected. This would represent
a model in which pairs of residues were important in
determining the conformation of a-helix. Of course,
it may be that more than two residues have a
determining role, but there is insufficient data to
consider such a model (except by default, i.e. if good
predictions cannot be made by using pairs above).
The estimate would therefore be of the form:

E[I(Sj = X: ;RJM, ... Rj... . RJ+M)ID(Sj, Rj, Rj+m,
-MSm<+M)]

where D(Sj,Rj,Rj+m,-MSmS+M) signifies that a
contingency table with all frequencies f(Sj, Rj, Rj+m)
at separations between -M and +M inclusive is to
be used as the data. Note that if contiguous residues
only are to be considered, setting M= 1 confines
evaluation to residue pairs (Rj1, Rj) and (Rj, Rj+1).

Step 3. Estimate Ifunctions by # functions

Each term in the expansion represented by eqn. (61)
may be estimated by # functions. For example,
we may use the 'expected-frequency' method accord-
ing to the general rule:

EVI(Sj = X:5Z; Rj+m, Rj, . .. Rj+m._,)l D(Rj,.. . Rj+M")
= *[o(X, Rj,... Rj+m )]
-#[o(M Rjl I... Rj+M")]

- [e(X, Rj+m1 *Rj,... Rj+m,_1)]
+ #[e5, Rj+l **Rj,... Rj+m,_jL)] (62)

This is derived by putting specific parameters
into eqn. (53). Estimatingeqn. (61)forthecaseofpairs
only we therefore obtain:

E[I(Sj = X:X; RJ_M .... RJ, . . . RJ+M)I D(Sj, Rj, Rj+m,
-M<m +M)]
= # [o(X, RJ)]- # [o(X, Rj)]- # [e(X, Rj)]

M-+m
+ # [e(R, Rj)]+ { [o(X, Rj, Rj+m)]

M--m

-# [o(R, Rj, Rj+m)]- [e(X, Rj+mIRj)]
+ # [e(5, Rj+m I Rj)]} (63)

Step 4. Use ofthe # functions to makepredictions
The above Bayes' expected-information analysis

can be reversed to achieve a synthesis (prediction)
of an otherwise unknown conformation. A decision
theory approach is used to decide between the
conformation X and X of each residue.

Consider the simplest case of a prediction by using
eqn. (63). SJ is predicted to beX rather thanX if:

E[I(Sj = X: X; RJ-M, . . . Rj, . . . Rj+M) D(Sj, Rj, Rj+m,
-M<m<+M)]-DP(X:X)>O (64)

Otherwise X is predicted.
Hence X is predicted if the value of eqn. (63)

exceeds a specified value DP(X:X). Although the
precise value of eqn. (63) might be of interest as a
measure of the extent to which X is preferred to X
or vice versa, a prediction as such must involve an
unambiguous decision for or against the occurrence
of X at j. To convert a continuous range of infor-
mation values into such a binary 'yes' or 'no' situa-
tion, it is necessary to choose some point in that
range of possible values at which our decision will
change from a prediction of X to a prediction ofg.
This is a fundamental problem in the wider field
of decision theory where DP(X:5X) is termed the
decision point.
The simplest choice of decision point as discussed

by Goode (1962) may be expressed in our terminology
as:

DP(X:R) =-E[*(Sj = X: R) ID(Sj, R)]
--# [e(X, Rj)]+ # [e(X, Rj)] (65)

[See eqn. (50) for the estimate of *(Sj = X: ) given
data D(Sj, Rj).] Since these # terms appear in eqn.
(63), they can be cancelled when replacing DP(X:X)
in eqn. (64). The significance of this choice of
DP(X: X) is that, in the absence of information to
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the contrary, and before considering the amino acid
sequence of the protein to be predicted, there is no
reason to believe that the relative abundance of X
and X is any different to that in the proteins used to
obtain the data. Thus, by the choice of eqn. (65),
we abstract the effect of the expected frequencies
e(X, Rj) and e(3, Rj).
The choice of a decision point is more compli-

cated when it is considered desirable to process
further the predictions in some way at a stage
between, say, eqn. (63) and the final prediction.
One way of usefully processing such an equation is
to make use of a run constant n(X: R), which like
DP depends on X. A conformation is then predicted
asX only if it belongs to any run ofn(X: X) contiguous
residues with a combined information content
greater than DP(X:X). This is a simple way of taking
account of the fact that the conformation of a
residue may be influenced by the conformation of
neighbouring residues.

IfX tends to occur in runs to a greater extent than XI
tends to occur in runs, then improved predictions
can be made by taking n(X: X) > 1 (of course, if the
reverse is true, we can handle the situation by
reversing the definitions of X and X). Runs of less
than n(X: X) conformations X can then never occur
in our final prediction made on this basis. However,
runs of less than n(X: X) conformations X might
frequently appear. It follows that, if we make an
error by predicting a residue conformation X by
using n(X:X) = 1, it is more likely to be masked by
using n(X: 5ZI)>1 than a similar error made by
predicting R. The use of n(X:5) is then said to be
a procedure which generates a differential cost.
If £(Xp, 5O) is some measure of the cost to the
quality of the overall prediction of predicting Sj = X
when Sj = X is observed, and £(XR,Xo) is some
measure of the cost to the quality of the overall
prediction of predicting Sj= Z when Sj=X is
observed, then the decision point DP(X: Z) is given
by:

DP(X::)
= log m -#'RO] [e(X, Rj)]+ # [e(;Z, Rj)]LEV1, XO)j
= c(X:5)-# [e(X, Rj)]+ [e(RI, Rj)] (66)

This can be proven by recalling that the functions in
which we are taking a decision point are estimates
of the logarithms of likelihood ratios (eqn. 10), the
decision point in a likelihood ratio being discussed
by Goode (1962).
The decision constant c(X: 5R) may be regarded as

extra information which can be deduced from the
framework of the prediction problem, but which is
not contained even in the best possible estimate of
I(Sj = X: X; Rj-M,. . . Rj,... Rj+M). Strictly speaking,
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a decision constant is not, in general, a constant but
a function c(X: Z) of conformations X and R.
Note that substitution of eqns. (63) and (66) into

relation (64) and cancellation of terms common to
both sides yields the relation:

* [o(X, Rj)]- # [o(X, Rj)]
m=+M

+ : {# [X, Rj, Rj+m)]- # [(R, Rj, Rj+,)]
m=-M

-# [e(X, Rj+mIRj)]+ # [e(X, Rj+m IRj)]}
-c(X:XR) >0 (67)

X is predicted if this relation is true, otherwise XI is
predicted.
The decision point is further complicated if there is

reason to suppose that the relative abundance of X
and XI in the protein to be predicted is influenced by
general factors that are different from those in the
sample proteins. For example, there may be evidence
that the amount ofright-hand a-helix is influenced by
the size and shape of the protein. This contribution is
conveniently included in the decision constant
c(X:X) and can actually lead to a simplification
in the evaluation of c(X: R) when there is fairly
precise outside information concerning the relative
abundance ofX and X. For example, if it is known by
optical-rotary-dispersion (o.r.d.) studies that the
fraction of right-hand a-helix is about 30 %, then the
value of c(X: X) can be used which leads to a predic-
tion of 30% helix. The optimal prediction in such a
case is found by minimizing the difference between
the predicted and experimental fraction of helix as
a function of c(X:RI). In the absence of such outside
information, however, we have the problem of
evaluating the contribution of a differential cost to
c(X:R). This problem is made more difficult by the
fact that the differential cost also depends on n(X: S),
a suitable value for which is not known when X is a
novel conformation whose relevant properties have
not previously been determined.
The problem may be empirically resolved by

optimizing both n(X: X) and c(X:R), i.e. by making
a number of predictions to find the combination of
c(X: R5) and n(X: R5) that gives the 'best' predictions.
The values of c(X:R) obtained in this way are then
assumed to hold when predictions are made on pro-
teins of unknown conformation.

Clearly, to find those values of c(X: X) and n(X: 5)
that give the 'best' predictions the meaning of 'best'
must be defined. Usually, a 'best' prediction is con-
sidered to be that for which the fraction of residues
correctly predicted is highest. Robson & Pain (1973)
have argued in favour of the accuracy index as a
criterion of 'best'. The accuracy index is defined as:

F(Xo, Xp) F(Xo, p)F(Xo) F(Ro) (68)
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Fig. 1. Example of the way in which the O-Vt surface can
be partitioned into non-overlapping domains H, P, L and G

In practice, domains of this size will not be chosen
arbitrarily but will be chosen to enclose natural clusters
ofpreferred conformations (see Robson & Pain, 1974a).

where F(Xp, X0) is the number of times X is predicted
when X is observed and F(Xo) is the number of times
X is observed. The advantages of this measure over
the fraction of residues correct are its sensitivity and
its independence ofthe relative abundance ofXand S?.

Generally, whether or not a run constant is used,
it is useful in empirically determining an optimal value
for c(X: ). Other modifications of predictions,
such as smoothing procedures, special treatment of
the proline residue as a necessary helix breaker,
different methods of estimating information terms,
etc., can generate a differential cost which should be
taken into account by revaluation of the decision
constant. Frequently, good predictions can be
obtained by neglecting such considerations, but in
their absence the predictions cannot be guaranteed
to be optimal.

Extension of the procedure to the simultaneous
prediction ofmore than two conformations

The above theory and procedures apply to the
measurement and prediction of two alternative
conformations. However, that this is only an
apparent restriction can be seen by consideration
of Fig. 1. This figure is an example ofthe way in which
the O-Vi surface can be exhaustively partitioned into
non-overlapping domains, in this case H, P, L and G.
In turn, each domain is treated as X, so that four kinds
of conformation I(Sj = H:H; Rj-M,... Rj,... Rj÷M),
I(Sj = P:P; Rj-M,. .R, .. .Rj+M), I(Sj = L:L; RJ-M,

... Rj,... Rj+M) andI(Sj= G:G;RJM,. . . Rj,... Rj+M)
are estimated.

In principle, a prediction involving Ns different
conformations requires Ns- 1 decision constants.
However, the optimization of all these decision
constants by the procedure described above is not
usually a practical proposition. A satisfactory alter-
native is to determine Ns decision constants inde-
pendently, i.e. c(X:R) and n(X:X) are optimized
for each of H, P, L and G without taking the others
into account except as their union R. In a simple case
where all n(X:X) = 1, the conformation H, P, L
and G which then has the highest measure of
E[I(SJ = X:;RJ-M,. . .R,.. ..Rj+M)ID]-c(X:XZ) is
taken as the predicted conformation. When two or
more of the n(X:R) exceed 1, however, the prediction
of a residue conformation is partly dependent on the
predictions made for its neighbours. In some cases
this can lead to apparently ambiguous assignments
which can, however, be resolved by simple algorithms.
Several such algorithms are currently being tested.

Discussion

Advantages of the Bayes' expected-information
approach

A particular advantage of the approach presented
in the present paper is that information theory per-
mits the measure of independent information
contributions from statisticallyinterdependent events.
This is of very great value in attempts to break the
code relating sequence to conformation in globular
proteins, since the information contribution from
different symbols and symbol complexes can be
assessed independently. This independence arises
from the ability to write expansions of the form:

I(A, B) = I(A) +I(BIA)
which is also an example of the additivity of
information contributions [see Fano (1961) and, for
example, eqn. (60)]. The information supplied by
two events A and B is therefore the sum of the
information in A plus the contribution from B given
that A has occurred, but not including the infor-
mation in A. It is, of course, true that the measure
I(BfA) is influenced by A, but by the mathematical
definition of information used in information theory,
the information contributed by A is abstracted from
it. The distinction between a precise mathematical
definition of information and the general semantic
usage in this context has in the past caused some
confusion (Nagano, 1973, p. 412).
The advantage of the Bayesian approach to the

estimation of information as developed by Robson &
Pain (1971) is that very small amounts of data
contribute information which is intrinsically weighted
down in a very natural way. A consequence of this is
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that the method is for our purposes more robust than
certain classical statistic tests such as the chi-squared
test which is unreliable at low-frequency levels.
Further, there is not even general agreement as to
the frequency level at which the chi-squared test
becomes unreliable (Fisher, 1941; Aitken, 1945;
Kendall, 1948). Of course, the chi-squared test is a
very powerful tool as long as the data supplied to it
are suitably screened, and in studies on the relation of
sequence to conformation it has enjoyed considerable
popularity (Kotelchuck et al., 1969; Ptitsyn, 1969;
Nagano, 1973).
An objection might be raised that the Bayes'

expected-information approach is apparently rather
complex. This may be true of the theory, but not of
the procedures arising from it because the theory
yields a surprisingly simple result. This simple result
is represented by eqns. (45) and leads to the following
theorem:

The amount in nats of information provided
by an observation which supports a hypothesis
is equal to the reciprocal of the sum of the
number of observations which previously
supported the hypothesis and a parameter
which represents our prejudices concerning
the hypothesis before any observation is made.

With parameters h in eqns. (45) taken as frequency
counts plus 1, as used by Robson & Pain (1971)
[i.e. g = 1, eqn. (30)], this reduces to the simpler
statement:

The amounts in nats of information provided
by an observation which supports a hypothesis
is equal to the reciprocal of the number of
observations which now support the hypothesis.

Hence, withg = 1, the first supporting observation
provides 1 nat, the second 1/2 nats, the third 1/3 nats,
and so on. The total supporting information obtained
so far at each observation is thus 1 when the first
supporting observation is made, 1+1/2 when the
second is made, 1+ 1/2+1/3 when the third is made,
and so on. Hence, the information in m supporting
observations is the harmonic series # (m)= 1 + 1/2+
1/3+...1/m. When there are in addition n refuting
observations, the total refuting information is
#(n)= 1+1/2+1/3+...1/n and the total overall
information in support of the hypothesis is
#(m)-#(n)=1+1/2+1/3+... l/m-1-1/2-1/3-
* * -l1/n, i.e. -1/(n+ 1)-1/(n+2) .. .-l/(m-1)-l/m
if m> n. Thus a 'star' function *(Sj = X:R; Rj), for
example, would be estimated by adding 1/rm to its
value when residue Rj is observed in conformation X
for the mth time and by subtracting 1/n from its
value when Rj is observed in conformation 5 for
the nth time. In practice, it is faster simply after
counting the frequencies f(X, Rj) and f(5, Rj),
to refer to the table of the harmonic series, and then
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to subtract one returned value from the other.
Such tables need not be wasteful ofcomputermemory.
A property of harmonic series of this type is that,
ifm and n are large, the difference between the total
supporting and the total refuting information
approaches the natural logarithm of the ratio of m
to n. Generally, if neither of the frequencies con-
cerned is very small, this approximation can be
used if their sum exceeds 25.

Tests on a Bayes' expected-information procedure

Although not the only possible Bayes' expected-
information procedure, that used by Robson & Pain
(1971) has been most extensively used and tested.
This procedure involved the use of a run constant
and relation (67), estimated as described above
by the expected-frequency method. However, these
workers added one to all frequencies f(Rj),
f(Sj, Rj) and f(Rj, Rj+m) (see Robson & Pain,
1971, p. 242). Predictions of right-hand a-helix were
used as a test criterion, and it was shown that the
observed helical regions could be accurately recon-
structed from the information measures by using the
decision-theory procedure described above (Robson
& Pain, 1971). Note that, to optimize the run and
decision constants, these authors used the fraction of
residues correct as the criterion of 'best' prediction.
An analysis of the estimates of I(Sj = X:X;Rj+mIRj)
yielded meaningful results consistent with previous
findings and a simple mechanistic interpretation
(Robson & Pain, 1972). A discussion of the general
implications of the results is given by Robson &
Pain (1973).

Alternative Bayes' expected-information procedures

There are many possible variations on the appli-
cation of Bayes' expected information which are,
however, mutually consistent and which represent
alternative models concerning the transfer of infor-
mation between sequence and conformation. For
example, the left-hand side of eqn. (61) could alter-
natively be expanded as:

I(SJ= X:X; RJ-M ... Rj,... Rj+M)
m=+M

=I(S,, = X: ;Rj)+ I(Sj = X:R;Rj+m)
m=-M

This expansion implies an information-transfer
model inwhich theinformation transferred from other
residues to determine the conformation of residue j
is independent of the type ofresidue Rj. Estimation of
the terms is, however, entirely analogous to that of
the terms in the original expansion, but involves
frequencies as f(Sj, Rj+m) rather than f(Sj, Rj, Rj+.m).
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An advantage of this model is that the values of the
former frequencies will tend to be very much higher
than those of the latter, despite the fact that the
contributions of other residues are still being taken
into account. Details are lost, however, concerning
interactions between the residues.

Currently, alternative models of information
transfer between sequence and conformation are
being examined (Robson & Pain, 1974a,c). As an
aid to discussing the various models for information
transfer and explaining such models in stereo-
chemical terms, the following terminology is useful.
Estimates of information I(Sj = X: ;Rj) may
be called intra-residue information because this
is the information a residue carries about its own
conformation. Estimates of information of the type
I(SJ = X: R;Rj+mIRj,...) may be called inter-residue
information because this is the infonnation one resi-
due carries about the conformation of another.
More specifically, if this information is a function of
2, 3, 4,... parameters R then it is correspondingly
called duplet (or pair), triplet, quadruplet,... residue
information. If this information contains only one R
parameter, namely I(SJ = X:R; Rj+.), it may simply
be called directional information (Robson & Pain,
1972). Inter-residue information is also usefully
classed as local or non-local depending on whether
Sj and Rj+,. are close together or (arbitrarily) far
apart along the amino acid sequence.
There are, however, certain variations in procedure

which do not correspond simply to a new choice of
model on the lines described above. For examnple,
rather than use the expected-frequency method
(eqns. 50 and 51) one could use a consistent method
of choosing the parameters h (see above). Estimating
eqn. (61) as far as, say, triplet-residue information,
then one could choose the g(Sj,Rj+mj,Rj+M2) (cf.
eqn. 30) in such a way that, for the available data,
only the triplet-residue information terms are
significant. Such variations in procedure might be
described as involving a different choice of statistical
model.
The advantage of the expected-frequency choice

of parameters h over a consistent choice of the h
is an empirical one, no consistent choice having yet
been found which gives predictions as good as those
obtained by using the expected-frequency method.
Note, however, that areasonable choice ofparameters
h can lead to results that are almost as accurate
(Robson & Pain, 1971). In certain cases there is no
particular reason for using the expected-frequency
choice: either predictions are not to be made with the
measures obtained or there is no apparent improve-
ment when this choice is used with the predictions.
For example, the choice may not lead to an improve-
ment in predictions which do not involve duplet
(or higher) residue information. In such cases the
choice of setting all g equal to zero is recommended,

so that the parameters h correspond simply to fre-
quencies f. Although the prior probability density
(eqn. 27) is then 'improper' (i.e. cannot integrate to
1), the posterior probability density (eqn. 29) is
proper, providing all frequencies exceed unity. The
problem of zero frequencies can be circumnavigated
by assuming that an event which occurs once is no
more significant than if it had not occurred at all,
and contributes 1 nat information in support of the
hypothesis (cf. eqn. 45c).

Stationarity problem
One of the fundamental assumptions of the

analytic method is that such correlations as exist
between sequence and conformation will hold in any
new protein, i.e. that the relations between symbols
which define the code are constant for all proteins.
The dangers of this assurmption are well known in
other applications of information theory where the
problem is known as the stationarity problem.
In the context of protein conformation, the problem
materializes as the possibility that the starting
conformation for heuristic programming is a poor
choice for the protein in question because this
protein has certain unknown novel qualities.
A simple example of non-stationarity would be in

regard to the decision constant. For example, because
of the difficulty of packing long helical regions into
a small globular protein, such helical regions would be
expected to bend(becomenon-helical) at their weakest
points. This would correspond to raising the decision
constant for such proteins. Further, it is known that
proteins tend to form locally packed, relatively
separate globular regions called 'supersecondary
structures' (Wetlaufer, 1973). It is then possible that
it is the size of these supersecondary structures that
effects the bending of helices and hence the decision
constant. Alternatively, of course, it could be that the
lengths of existing helices is one of the factors that
control the size ofthe supersecondary structures.

Despite thepossibility ofnon-stationarity, however,
the continuing rate of improvement in the predic-
tive power of procedures from many laboratories
(see Robson, 1972, 1974, for reviews) gives con-
siderable grounds for optimism.

This work was supported by a grant fromi the Medical
Research Council. I am grateful for helpful discussion to
Dr. I. D. C. Gurney, Dr. A. Hagler and Dr. M. Levitt.
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